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Prof. Z. Szafrana 4a, 65-516 Zielona Góra, Poland
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Motivated by the proposed alternative nonlocality quantifier [1], and a wide family of symmetric states ICPS [2], we preset grasp application of those tools in the analysis
of a real physical system. We analyze photon-number entangled states which are generated in Kerr media with optical parametric pumping [3]. We combine nonlocality
measures and ICPS states. First, we project the density matrix of our physical system onto the family of ICPS by averaging over symmetries ( twirling). Next, for each
time step of the considered time evolution of our system, we calculate the negativity and negativity of projected states to determine the lower bound of entanglement and
compare it with the actual one. Finally, we compare those results with the lower bound of nonlocality calculated with the volume of violation.

The model

We consider a system composed of two nonlinear Kerr oscillators mutually coupled by parametric pump-
ing. In a given system, pairs of photons via spontaneous parametric down-conversion are produced.
The Hamiltonian describing the analyzed system takes the following form [3]:

Ĥint =
χa
2

(â†)2â2 +
χb
2

(b̂†)2b̂2 + gâ†b̂† + gâb̂ + Gâ†âb̂†b̂ (1)

where the first two terms of the Hamiltonian describe the nonlinear Kerr-type oscillators characterized
by the nonlinearity constants χa and χb. The last term is the Kerr cross term, whereas the other two
are related to the two-mode parametric process. Parameter g represents the strength of the external
field. Operators â†(b̂†) and â(b̂) are the creation and annihilation operators (subsystems A(B)).

The considered system is initially in the vacuum state and g < χa + χb, hence the time evolution is
limited to three possible states. The truncated wave function can be expressed as:

|ψ(t)〉cut = c00(t)|00〉 + c11(t)|11〉 + c22(t)|22〉, (2)

The trunctuation accuracy is measured by the function F (t), where:

F (t) = |c00|2 + |c11|2 + |c22|2. (3)

From Fig. 1, we can see that the deviation of the function F (t) from unity is of the order of 10−5, and

hence, the states with a higher number can be neglected.

The projection

The family of ICPS states [2] is characterized by six real numbers (five independent). We projected the
density matrix ρ(t) corresponding to the system described by Eq.1) onto the family of ICPS states ρ̃(t)
(P : ρ(t) → ρ̃(t)). The operation of projection (often termed twirling) [4] cannot increase the degree
of entanglement [5]. Let ρ(t) = |ψ(t)〉cut ⊗cut 〈ψ(t)|. Then the only non-zero elements of projection

density matrix ρ̃(t) are given by: a1 =
|c00|2+|c11|2

2 , b1 = Re(c00c11), b2 = Re(c00c22) +Re(c11c22) and
a4 = 1 − 2a1. The time evolutions of these parameters are presented in Fig. 2. We can see that the
two most fluctuating in time parameters are b1 and b2, which are related to off-diagonal elements of the
density matrix ρ̃(t).

The entanglement and volume of violation

To quantify entanglement generated in the analyzed system, we use the negativity [6]:

N(ρ) =
‖ ρTA ‖1 −1

2
, (4)

where ‖ · · · ‖1 means the trace norm of the matrix, and ρTA is a partially transposed density matrix.
Negativity for projections ρ̃(t) can be expressed as:

N(ρ̃(t)) = |b1| + 2|b2| (5)

The time evolution of both negativities, that is, N(ρ(t)) and N(ρ̃(t)), is illustrated in Fig. 3. The ana-
lyzed period is large enough to observe a periodical behavior in the amount of entanglement generation.
Initially starting from zero, the negativity N(ρ(t)) quite fast breaks the limit of 0.3 and converges to
its maximum around 0.55.

In our analysis, we consider bipartite quantum systems d⊗d. For such a system, we use an alternative
measure of nonlocality proposed by Fonseca and Parisio [1]:

V (ρ, I) =

∫
Γρ,I

dnx, (6)

where dnx = dx1 . . . dxn, I is an arbitrary Bell-type inequality, X is a space of all possible config-
urations of parameters xi, and subspace Γρ,I ⊂ X contains all possible configurations xi leading to
violation of inequality I . Here we use CGLMP inequality [7] and the set of local observables M1 (to
see more details please check [8]). The evolution of V is more polarized in the sense, that there is a
longer time where there is no nonlocality detected. This is contrary to entanglement which, although
often small, is detected almost all time.
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Figure 1: The time-evolution of the 1− F (t) function for |ψ(t = 0)〉 = |0〉a|0〉b, χa = χb = 1,
g = 0.6, and G = 2χa. Time is scaled in the units of 1/χa,b.
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Figure 2: The time-evolution of the a1, a4, b1, b2 as elements of projected density matrix ρ̃(t).
The values of parameters are the same as for previous figure.
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Figure 3: Time evolution of N (ρ),N (ρ̃) and V (ρ). Volume of violation was normalized.
The values of parameters are the same as for previous figures.

Summary

To the given system (1) we have applied projection to symmetric ICPS states, for which, we quantified
both entanglement and volume of violation. They serve as a lower bound of quantum correlations of
the actual system for which we calculated entanglement as well.

• For our model, we can see that N(ρ̃(t)) follows quite accurately the periodical change of N(ρ(t)).

• The mean value of the difference N(ρ(t)) − N(ρ̃(t)) is 0.1218, which is around 25% of the mean
value of N(ρ(t)).

• For the normalized time evolution of V , we can observe the same periodicity as in the case of N(ρ(t)),
and N(ρ̃(t)), however at low values of negativity we do not observe any nonlocality.
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[6] K.Życzkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883, (1998)

[7] D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Phys. Rev. Lett. 88, 040404, (2002)
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