

APMME 2021

Assessment on the Physical, Mechanical Properties and Leaching Behaviour of Fired Clay Brick Incorporated with Steel Mill Sludge

Sarani, NA¹., Hashim, AA¹., Kadir, AA^{1,*}., Hissham, NFN¹., Hassan, MIH¹., Jalil, MRA¹ & Halim, MKK¹.,

Nabiałek, M²., Jeż, B².

' Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, MALAYSIA

² Department of Physics, Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, al. Armii Krajowej 19, 42–200 Częstochowa,

POLAND

*Corresponding author : aeslina@uthm.edu.my

[1] ABSTRACT

- Clay was replaced with 0%, 5%, 10% and 15% of steel mill sludge (SMS) and fired at 1050°C (heating rate of 1°C/min)
- Few tests such as firing shrinkage, dry density, compressive strength and Toxicity Characteristic Leaching Procedure (TCLP) have been conducted
- The results showed that incorporation up to 15% of SMS have reduced the properties up to 27.3% of firing shrinkage, 8.1% of dry density and 67.3% of compressive strength
- The leaching behaviors of Zn and Cu from SMS were reduced up to 100% from 7414 to 9.22 ppm (Zn) and 16436 to 4.654 ppm (Cu) after incorporated into fired clay brick
- Therefore, recycling of steel mill sludge up to 15% into construction building materials not only alleviates the disposal problems but also promoting alternative for new raw materials in building industries.

[3] RESEARCH AND DEVELOPMENT

Parameter	Results
Characterization	 The elements present in the steel mill sludge are almost similar to the clay soil Heavy metals concentration in SMS are much higher compared to clay soil with Zn (16436 mg/L), Cu (7414 mg/L), Pb (4391 mg/L), Sn (657 mg/L), Cr (351 mg/L) and Ni (104 mg/L)
Physical and mechanical properties	 Firing shrinkage, dry density and compres- sive strength decreased with increasing percentage of SMS while initial rate of suc- tion was increased
	 The optimum percentage of SMS incorpo- rated into fired clay brick during brick pro-

[2] METHODOLOGY

٠

Raw materials preparation and

- characterization
 - Clay soil
 - Steel Mill Sludge (SMS)

Brick manufacturing

- Control brick
- Steel Mill Sludge Brick (SMSB)

Leachability test

Toxicity Characteristic Leaching Procedure (TCLP)

Physical and mechanical properties

- Firing shrinkage
- Dry density
- Initial rate of suction
- Compressive strength

[4] CONCLUSION

Outcome:

۲

- Elements that present in steel mill sludge are almost similar to the elements in clay soil.
- Incorporation of 15% steel mill sludge is capable in improving a better physical and mechanical properties of brick as well as complied with the environmental standard of leaching proce-
- Leaching test
 The parameters such as Zn and Cu were selected due to high concentration of heavy metals in raw SMS
 - The leachate concentrations of heavy metals of all manufactured bricks were below the permissible limit set by USEPA

dure.

Recycling of steel mill sludge into fired clay brick could serve as one of the desirable alternatives to replace the disposal method for the sludge while producing good quality brick.

- 1. Ukwatta, A., Mohajerani, A., Eshtiaghi, N. and Setunge, S., (2016). Variation in physical and mechanical properties of fired-clay bricks incorporating ETP biosolids. Journal of Cleaner Production 119. pp. 76-85.
- 2. Nor, M. A. M., Hamed, A. S. A., Ali, F. H. and Khim, O. K., (2015). Properties and performance of water treatment sludge (WTS)-clay bricks. Jurnal Teknologi 77 (32).pp. 83-93.
- 3. Kadir, A. A., Rahim, A. A. S. and Jamil, H. H., (2014). Utilization of mosaic sludge waste into fired clay brick: properties and leachability. Advanced Materials Research 1025-1026. pp. 117-121.
- 4. Hegazy, B. E. E., Fouad, H. A., and Hassanain, A. M., (2012). *Brick manufacturing from water treatment sludge and rice husk ash.* Australian Journal of Basic and Applied Sciences 6(3). pp. 453-461.