The structure and magnetocaloric effect of MnCoGe alloy modified by Nb

K. Kutynia¹, A. Przybył, P. Gębara

Fig. 1. XRD pattern of the tested alloy

Fig. 2. Top: The relationship between the magnetization of the tested alloy. Bottom: First derivative of magnetization

The analysis of the dependence of magnetization on temperature revealed two Curie temperatures which are **275** and **325K**

Tabele 1. Lattice parameters of phases detected in the investigated alloy.

Phase	Lattice parameter		
	a [Å]	b [Å]	c [Å]
Ni ₂ In	5.877	3.524	6.981
NiTiSi	5.463	3.989	6.994

Conclusions

- This article examines the structure and thermomagnetic properties of the $Mn_{0.9}Nb_{0.1}CoGe$ alloy.
- XRD tests of the material as cast at room temperature revealed the existence of two orthorhombic structures.
- The relationship between the magnetization and its first derivative showed two Curie points corresponding to the identified phases.
- Two overlapping peaks, corresponding to the two detected Curie points, were also measured depending on the temperature of the change in magnetic entropy.

Fig. 3. The ΔS_M vs. T curve measured in various external magnetic fields

Fig. 4. Temperature dependence n calculated for the mean-field model

Table 2. The values of $T_{C, \Delta}S_M$ and RC revealed for all investigated samples

Mn _{0.9} Nb _{0.1} CoGe				
μ ₀ Η	T _{C1} =275 [K]	T _{C2} =325 [K]	RC	
[T]	ΔS_{M1}	ΔS_{M2}	[J kg ⁻¹]	
	[J (kg K) ⁻¹]	[J (kg K)⁻¹]		
1	0.77	0.24	36.77	
2	1.58	0.62	100.72	
3	2.26	0.99	173.59	
4	2.84	1.59	232.09	
5	3.30	2.13	307.60	