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Fig. 1. Scheme of the considered system 
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Kinetic T and potential V energy: 

  

Formulation of the problem is based on the Hamilton principle. After appropriate 

mathematical transformations and taking into account the dimensionless 

parameters, following boundary conditions and equations of motion can be 

obtained: 

 

In this work, the influence of the loading method of an elastically mounted column on its natural frequency was investigated. The classic way to load these types of 

systems is to apply an axial force. In the presented approach, the load of the system in the form of a mass element was adopted, which much better reflects the real 

slender support system, whose task is to support a structure with a specific own weight. During the formulation of the boundary problem, Hamilton principle and 

perturbation small parameter method were used. A series of numerical simulations were carried out, taking into account the influence of the system parameters and 

the method of loading on the non-linear natural frequency. The main task was to determine the impact of the change in stiffness at mounting points of the system ends 

on the dynamic behaviour of the structure. It was shown that these stiffness have a significant impact on the natural frequency. It was also indicated that in the 

problem formulated in this way, the amplitude level of the induced system vibrations is of significant importance - which is not taken into account in the case of a force 

load. The knowledge of potential resonance frequencies in the case of slender support systems is one of the basic data taken into account in the design process of 

this type of structures due to their susceptibility to vibrations. 

The column elastically mounted on 

both sides and loaded by the mass 

element is under consideration. The 

load fulfils the Euler load conditions 

with additionally taken into account the 

longitudinal inertia of the loading 

element. The elastic mounting of the 

system is modelled by means of two 

rotational springs. 

 
W(x,t) – displacement in the 

transverse direction 

l – length of the system 

M – mass element 

Mg – load of the system due to the 

action of element M 

EJ – flexural rigidity 

ρA – unit mass 

R0, R1 – rotational springs 
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Dimensionless parameters: 
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The non-linear term appearing in equation of motion in longitudinal direction is 

developed into a series of small vibration amplitude parameter ε. Then the 

equations are grouped with respect to the same powers of the small 

parameter.  The obtained equations are solved sequentially and based on 

them following parameters are determined: 

• linear component of internal force in the column,  

• linear component of the natural frequency, 

• non-linear component of internal force in the column,  

• non-linear component of natural frequency. 

The results of the numerical calculations were presented with the use of 

dimensionless parameters: 
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Fig.2. The influence of one-side mounting rigidity on natural frequency: a) ζA = 0, 

b) ζA = 1 

Fig.3. The influence of two-sides mounting rigidity on natural frequency: a) ζA = 0, 

b) ζA = 1 

  

On the basis of the obtained results, it was found that an increase in the stiffness 

in the supports causes the characteristic curves to shift towards higher values. 

This is because the overall system stiffness has increased. The course of 

characteristic curves in the linear problem is linear. Increasing the stiffness in the 

supports may increase the critical load of the system (λ for Ω*=0). The increase in 

stiffness when considering the same column load causes an increase in the 

natural frequency. Controlling the stiffness of the support can be one way to 

actively counteract resonance.  

Taking into account the non-linear problem (the amplitude effect) changes the 

course of the characteristic curves from linear to non-linear.  It can be observed 

that with certain values of stiffness the critical load of the system decreases. This 

is mainly due to the vibration amplitude and increased system stiffness.  As shown 

in [10], an excessive increase in amplitude may result in a reduction of the critical 

load.  Moreover, the influence of the set amplitude level on the system with higher 

stiffness is greater, therefore, with higher stiffness in the supports, a reduction of 

the critical load with regard to the linear problem can be observed. In an extreme 

case, the curves may intersect (cf. Fig. 3b)). In this case, the increase in stiffness 

in relation to the same level of vibration amplitude resulted in a significant 

reduction of the critical load. 
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